

Development of Nanostructured Metallic Systems – Progress and Challenges

Presented by
P. R. Subramanian
Ceramic and Metallurgy Technologies
GE Global Research

R. Corderman*, S. Amancherla*, R. Oruganti*, S.-C Huang*, T. Angeliu*, S. Sanyal*, D. Srinivasan, K. Anand*, D. Gray*
*GE Global Research, Niskayuna, New York, USA
#GE Global Research, Bangalore, India

NATO Advanced Research Workshop, Kyiv, Ukraine September 07-13, 2003

maintaining the data needed, and of including suggestions for reducing	llection of information is estimated to completing and reviewing the collect this burden, to Washington Headqu ald be aware that notwithstanding ar OMB control number.	ion of information. Send comments arters Services, Directorate for Info	regarding this burden estimate or mation Operations and Reports	or any other aspect of the 1215 Jefferson Davis	nis collection of information, Highway, Suite 1204, Arlington		
1. REPORT DATE 18 MAR 2004		2. REPORT TYPE N/A		3. DATES COVERED			
4. TITLE AND SUBTITLE	5a. CONTRACT NUMBER						
Development of Nanostructured Metallic Systems Progress and					5b. GRANT NUMBER		
Challenges	5c. PROGRAM ELEMENT NUMBER						
6. AUTHOR(S)	5d. PROJECT NUMBER						
		5e. TASK NUMBER					
		5f. WORK UNIT NUMBER					
	IZATION NAME(S) AND AE c h, Niskayuna, New	` '	bal Research,	8. PERFORMING REPORT NUMB	G ORGANIZATION ER		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)					10. SPONSOR/MONITOR'S ACRONYM(S)		
					11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT lic release, distributi	on unlimited					
13. SUPPLEMENTARY NO See also ADM0016	OTES 72., The original do	cument contains col	or images.				
14. ABSTRACT							
15. SUBJECT TERMS							
16. SECURITY CLASSIFIC	CATION OF:	17. LIMITATION OF	18. NUMBER	19a. NAME OF			
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	- ABSTRACT UU	OF PAGES 32	RESPONSIBLE PERSON		

Report Documentation Page

Form Approved OMB No. 0704-0188

The Nanotechnology Challenge

"The Nanoworld is a weird borderland between individual molecules and the macroworld."

Scientific American, 9/01

Mechanical
Properties
Structural Materials
Coatings
Wear &
Abrasion...

Photonics
Materials
Components

Nanotechnology

Biotech

Imaging

Therapy IVD

MEMs,
Energy,
Adv.Computing,
Electronics,
Sensors,
H2 Storage
Catalysis...

Light-Energy PV OLED

Too Many Opportunities: Where do we start?

Nanotechnology Opportunities in GE

GE Technology...

Saving Energy & the

Environment

GE Aircraft Engines, GE Power Systems, GE Specialty Materials, GE Industrial Systems, GE Transportation

GE Consumer Products, GE Plastics

- The Future of Healthcare
 - GE Medical Systems

Why is GE Investing in Nanotechnology?

All of the GE Businesses will benefit from the current investments being made in nanomaterials and nanotechnology

GE's Nanotechnology Program

NanoMaterials

Nanotubes & Nanowires Platform

Leverage existing & invent novel materials In targeted application areas

Magnetic Nano-Particles Platform

Develop expertise in functionalized magnetic nanoparticles via contrast agents for

magnetic

nanocrystal

magnetic

targeted

MR contrast

NanoComposites

NanoStructures in Metals & **Ceramics Platform**

Develop fundamental structureproperty relationships to design novel structural materials

ODS Alloys

Thermal Spray

EB-PVD

Ordered NanoStructures

Hybrid Materials Platform Exploit self-assembly to engineer complex organic/inorganic systems

Ceramics Platform

Leverage biomimetic syntheses to produce high toughness, high T structural ceramics

Soft Lithography, Micro-casting

Field Induced, So

Surfactant / Polymer Based Synthesis

Nanostructured Metallic Systems

Develop fundamental structure-property relationship to design nanostructural materials & coatings with superior properties

Scaleable,
Bulk Processes
Casting, Powder processing,
Deformation processing

Structure-stability -property fundamentals Physical Vapor Deposition

Focus

- > Create & control nanostructures
- > Stabilize structures
- > Optimize structures for properties

Opportunities for exceptional stability & strength enhancement in metallic materials

Strengthening Mechanisms

- **Issues:** Dislocation source saturation at nano-scale
 - Competition between strengthening from nano-scale vs. weakening by gb sliding
 - Thermal stability

Strengthening Mechanisms: Dislocation Pile-up Model

Single phase Nanocrystalline Materials

- Large grains: many dislocations in pile-up \rightarrow continuum theory of Hall-Petch works ($\sigma \propto d^{-1/2}$)
- Small grains: question is how many dislocations in pile-up?

of dislocations in pile-up (using circular pile-up model)

$$\mathbf{n} = \left(\frac{\mathbf{\tau}^*}{\mathbf{G}}\right)^{1/2} \left(\frac{\mathbf{D}}{\mathbf{b}}\right)^{1/2}$$

~20-100 nm grain size: dislocations cross gbs one at a time & there is no pile-up (dislocation source saturation)

→ Easier to deform by Coble creep instead of dislocation glide

Layered Structures

Large h ($\lambda/2$)

Hall-Petch behavior - dislocation pile-ups at interface

Small h ($\lambda/2$)

Plastic flow by single dislocations moving by bowing within layers

Leaves misfit dislocations at interface

Effect of Dispersoid Reinforcement: Strengthening

Dislocation-particle interactions

Orowan mechanism

Interfacial pinning mechanism

Issues:

- Thermally assisted climb at high Ts
- Microstructural stability at high Ts and high stresses
- Dispersoid volume fraction: Tradeoff for strengthening vs. ductility? What is needed for wear resistance?

Dispersoid Reinforcement - Grain Boundary Pinning

Issues:

- Microstructural stability at high Ts and high stresses
- Dispersoid volume fraction: Tradeoff for strengthening vs. ductility ? What is needed for wear resistance?

Dispersoid Structures

Nano strengthening mechanisms can be used to leverage superior wear properties while retaining higher toughness

Wear = $f(H, K_c)$

H = Hardness: $f(\lambda^{-1/2})$

 K_c = Fracture toughness: $f(\lambda/d)$

- Higher hardness through lower mean free spacing λ
- Better toughness through fine particle size d, and d/λ ratio

7 X reduction in wear by reducing λ from 0.4 to 0.15 microns

High wear resistance and toughness obtained by dispersoid structure

Nanostructured Pure Metals: Background

- Strength (nanocrystalline metals) >> Strength (conv. metals)
- Ductility (nanocrystalline metals) << Strength (conv. metals)
- Hardness & wear resistance = strong function of gs
- Modulus & thermal expansion = mostly grain-size independent
- Softening at ~ 5-50 nm grain size due to grain boundary sliding + diffusional creep
- Properties = strong function of processing

Multilayer Strengthening: Background

- Parameters influencing strength
 - Layer spacing (λ)
- → Large spacings: Hall-Petch behavior (Dislocation pile-up model)
- → Low spacings: individual dislocation motion in layers
- → Very low spacings: superlattice strength (>> harder component)

- Miscibility
- Slip systems (Crystal structure)
- Shear modulus
- Coherency strains (δ)

- Metal/ceramic multilayers show good combination of toughness + hardness
 => wear application
- Significant strengthening observed in nanolayered structures

Summary of Mechanisms at Nano-Scale

	Dispersed Structures		Laye	Layered Structures			
Mechanisms/Factors	Strength	Creep	Thermal Stability	Strength	Creep	Thermal Stability	Parameters
Dislocation-particle interaction (Orowan effect, attachment, detachment, shear)	√	√					Particle size, spacing, distribution
GB-particle interaction (Zener pinning)	1	1					Particle size, spacing, distribution
Hall-Petch effect (Dislocation-boundary interaction)	1			1			Matrix grain size /layer spacing
Grain boundary sliding	1	1	1				Matrix grain size & aspect ratio
Microstructural Evolution	√	√	√	√	√	√	Thermo/kinetics
Interfacial energy		√	V		1		
Dislocation sources & generation stresses	√?			1			Matrix grain size /layer spacing
Dislocation substructure	1						Matrix grain size
Koehler Stress or Image Stress				V			Modulus mismatch
Interface coherency	1			V			Crystallographic mismatch
GB segregation of solutes & particles	√	√	1				
Misciblity	1		1	V		√	Solubilty/diffusivity/ Thermodynamics

GOAL: Differentiate mechanisms giving rise to unique properties

Stability & Structure-Property Understanding

Stability

Predictive tool development

- Phase Field
- Analytical
- § Grain growth
- § Alloying effects on stability
- § Thermal stability of layered structures
- § Exptl. validation

Atomistics

Strengthening mechanism prediction & fundamental quantities

- Embedded Atom Method
- Analytical
 - § Interfacial strength
 - § Dislocation-interface interaction mechanisms
 - § Exptl. validation

Mechanical Behavior

Deformation behavior understanding

- Analytical
- Numerical

§ Nano-structural effects on deformation behavior

§ HT creep mechanisms in nanostructures

Modeling across multiple-length scales for structure-to-property understanding in metallic nanostructures

Model Material Systems

Produce controlled & tailored systems for structure-property understanding Learn what controls grain growth; high T stability; gb sliding

Cast Oxide Dispersion Strengthened (ODS) Alloys

Objective: Develop technology for dispersion of nano oxides in molten metal castings.

Opportunity

- Lower cost
- Higher strength
- Higher T capability

Technical Barriers:

- Wettability & reactivity at particle/matrix interface
- ·Dispersion, initially and during solidification

Power feedstock

Dispersion Technologies

- Coatings
- Active Elements

Coat feedstock

Melt and Solidified casting

Agglomerated n-yttria + detached n-oxides

Initial results showed some wetting and dispersion of nano-oxides in molten metal

Amorphous-Induced Nanocrystalline Materials

Nanostructured Fe-Based Materials

Layered Structures by PVD

 $(50nm Cu/50nm Mo) \times 50$

 $(5nm Cu/5nm Mo) \times 50$

20 nm

 $(50nm Cu/5nm Mo) \times 50$

 $(100nm Cu/50nm Mo) \times 50$

- Controlled nanolayer systems can be fabricated by PVD
- Experiments planned to study variables affecting strength in layered systems

of GB

Cu/Mo Sputtered Nanocomposite Multilayers

Unstable Region

Ratio(GBE/Interfacial E)

Stability Diagrams

- Significant increase in hardness demonstrated in nano multilayers
- ~60% drop in strength for unstable spherodized structure

Progress on ML stability: Kinetics of grooving

Cu-Mo

Kinetic Model:

Evolution of groove depth 'd' with time 't':

Thermal stability of Multilayers:

→ Instability mechanism: thermal grooving

$$d = (0.78) \ \left(\tan\beta\right) [(\Omega^{4/3} \ D_{int}) \frac{\gamma_{int}}{kT}]^{1/4} \ t^{1/4}$$

For a (50 nm/50 nm) Cu-Mo multilayer, time taken for grooving :

T= 800° C \rightarrow time ~ 0.006 h

T= 500° C \rightarrow time ~ 0.16 h

T= 300°C → time ~ 12 h

Refinements Needed:

- Interface Diffusivity of Cu-Mo
- GBE/interfacial energies dependence with T
- •HT & TEM to determine groove angle in Cu-Mo multilayers
- •Refinement of kinetics model needed

Atomistic Modeling – Barrier Strength in Multilayers

GOAL: Prediction of strength in nanolayered structures

Vapor Deposited ODS Nanocomposites

all temperatures

Nano ODS has ~2-3x greater hardness (strength) than conventional material

Mechanically Alloyed Nano-Al

Early stages of understanding of potential stability mechanisms in Nano-Al

Multiscale Modeling: Phase-field Approach

Phase-field approach is applicable at micron and nano size scales

Thermal Stability- Microstructural Evolution Modeling

Thermodynamics
Diffusion
Strain energy
Surface Energy
Morphology

- How much of second phase (V_f)
- Size (d_p)
- Shape
- Crystal structure & orientation relationship
- Stability

Initial modeling efforts: Ni @ 800 °C

Grain growth model in place for predicting thermal stability of nano-structures

Thermal Stability- Microstructural Evolution Modeling

Grain growth in pure Ni: Model vs. Validation

T (°C) / t (min)	Grain Size (μ) Starting GS = 16.4 μ					
r (min)	Model	Expt				
800/30	35.5	35.1				
800/60	44.2	37.9				
1000/30	102.1	91.9				

Model solute
Diffusivity = $\frac{1}{2}$ (self diffusion of Ni)

 τ =0: Grain = 5 % GB = 5 %

 τ =400: Grain \approx 1 % GB \approx 16 %

 τ =5000: Grain \approx 3 % GB \approx 18 %

1μm

Model predicts significant grain growth retardation with 20% solute at gb Experimental validation planned with PVD structures

Wear of Dispersoid Structures: Microstructural Effects

Wear resistance = $f(H, K_c)$

H = Hardness: $f(\lambda^{-1/2})$

 K_c = Fracture toughness: $f(\lambda/d)$

Thermal Sprayed WC/Co Coating

SEM of Fracture surface

High wear resistance and toughness obtained by nanostructured coatings

What next?

Explore
stability &
strength in
materials with
broad-based
impact

Multilayers Dispersed Structural Metal/Metal Alloys Metal/Ceramics **Functional** Coatings Structural alloys Nanomagnets **Toolkit** Create structures Wear Stabilize structures coatings Structure-property Others? Mechanical behavior Physical properties Tribology **Erosion** coatings

Beyond structural applications??

GE Global Research Nanocomposites - Breaking Design Limitations

Enabler for Multiple Applications

- •Kanchan Kumari GEGR, Bangalore
- •Dheepa Srinivasan GEGR, Bangalore
- Michael Larsen GEGR, Niskayuna
- Michelle Othon GEGR, Niskayuna
- Ann Ritter GEGR, Niskayuna
- Chris Furstoss GEGR, Niskayuna
- Yunzhi Wang Ohio State University
- Hamish Fraser Ohio State University